平行四辺形ABCDがあります。
辺AB、CDを4等分し、辺BD、DAを3等分して図のように結ぶと
中に平行四辺形IJKLができます。
中の平行四辺形LJKLは外の平行四辺形ABCDの何分のいくつでしょう。
辺AB、CDを4等分し、辺BD、DAを3等分して図のように結ぶと
中に平行四辺形IJKLができます。
中の平行四辺形LJKLは外の平行四辺形ABCDの何分のいくつでしょう。
(4) 中の平行四辺形LJKLは外の平行四辺形ABCDの何分のいくつでしょう。
正解です
辺BJ:辺JI:辺IH=3:9:1
ということは、台形IHDFと台形JILKは高さが同じ三角形だから
面積は、底辺の長さの比になる。
つまり 3+9+1:9=13:9 だから
黄色い三角形は、平行四辺形BHDFの9/13になっている。
BHDFは、外側の平行四辺形の2/3だから
2 | × | 9 | = | 6 |
3 | 13 | 13 |
平行四辺形と三角形